
DARCS(1) User Commands DARCS(1)

NAME
darcs − an advanced revision control system

SYNOPSIS
darcs COMMAND ...

DESCRIPTION
darcs is a nifty revision control tool.For more a detailed description, see the html documentation, which
should be available at /usr/share/doc/darcs/manual/index.html. To easily get more specific help on each
command, you can call ‘darcs COMMAND --help’.

CREATING REPOSITORIES
get Get creates a local copy of a repository. The optional second argument specifies a destination

directory for the new copy; if omitted, it is inferred from the source location.

By default Darcs will copy every patch from the original repository. This means the copy is com-
pletely independent of the original; you can operate on the new repository even when the original
is inaccessible. If you expect the original repository to remain accessible, you can use --lazy to
avoid copying patches until they are needed (‘copy on demand’). Thisis particularly useful when
copying a remote repository with a long history that you don’t care about.

The --lazy option isn’t as useful for local copies, because Darcs will automatically use ‘hard link-
ing’ where possible. As well as saving time and space, you can move or delete the original reposi-
tory without affecting a complete, hard-linked copy. Hard linking requires that the copy be on the
same filesystem and the original repository, and that the filesystem support hard linking.This is
usually the case, except for Windows versions prior to Vista.

Darcs get will not copy unrecorded changes to the source repository’s working tree.

It is often desirable to make a copy of a repository that excludes some patches.For example, if
releases are tagged then ‘darcs get --tag .’ would make a copy of the repository as at the latest
release.

An untagged repository state can still be identified unambiguously by a context file, as generated
by ‘darcs changes --context’. Given the name of such a file, the --context option will create a
repository that includes only the patches from that context. Whena user reports a bug in an unre-
leased version of your project, the recommended way to find out exactly what version they were
running is to have them include a context file in the bug report.

You can also make a copy of an untagged state using the --to-patch or --to-match options, which
exclude patches ‘after’ the first matching patch.Because these options treat the set of patches as
an ordered sequence, you may get different results after reordering with ‘darcs optimize’, so tag-
ging is preferred.

If the source repository is in a legacy darcs-1 format and contains at least one checkpoint (see
‘darcs optimize), the --partial option will create a partial repository. A partial repository discards
history from before the checkpoint in order to reduce resource requirements.For modern darcs-2
repositories, --partial is a deprecated alias for the --lazy option.

initialize
The ‘darcs initialize’ command turns the current directory into a Darcs repository. Any existing
files and subdirectories become UNSAVED changes in the working tree: record them with ‘darcs
add -r’ and ‘darcs record’.

When converting a project to Darcs from some other VCS, translating the full revision history to

darcs December2008 1



DARCS(1) User Commands DARCS(1)

native Darcs patches is recommended.(The Darcs wiki lists utilities for this.) Because Darcs is
optimized for small patches, simply importing the latest revision as a single large patch can PER-
MANENTLY degrade Darcs performance in your repository by an order of magnitude.

This command creates the ‘darcs’ directory, which stores version control metadata.It also con-
tains per-repository settings indarcs/prefs/, which you can read about in the user manual.

In addition to the default darcs-2 format, there are two backwards-compatible formats for the
darcs directory. If all contributors to your project have darcs 2.0.0 or higher, use the default for-

mat.

If some contributors still run Darcs below 2.0.0, you need to use the ‘old-fashioned inventory’ for-
mat for any repositories those contributors access. Because patches cannot be shared between
darcs-2 and old-fashioned repositories, other project repos should use the intermediary ‘hashed’
format.

Darcs will create a hashed repository by default when you ‘darcs get’ a repository in old-fashioned
inventory format. Once all contributors have upgraded to Darcs 2.0.0 or later, use ‘darcs convert’
to convert the project to the darcs-2 format.

Initialize is commonly abbreviated to ‘init’.

MODIFYING REPOSITOR Y CONTENTS
add Generally a repository contains both files that should be version controlled (such as source code)

and files that Darcs should ignore (such as executables compiled from the source code).The
‘darcs add’ command is used to tell Darcs which files to version control.

When an existing project is first imported into a Darcs repository, it is common to run ‘darcs add -r
*’ or ‘darcs record -l’ to add all initial source files into darcs.

Adding symbolic links (symlinks) is not supported.

Darcs will ignore all files and folders that look ‘boring’.The --boring option overrides this
behaviour.

Darcs will not add file if another file in the same folder has the same name, except for case.The
--case-ok option overrides this behaviour. Windows and OS X usually use filesystems that do not
allow files a folder to have the same name except for case (for example, ‘ReadMe’ and
‘README’). If --case-ok is used, the repository might be unusable on those systems!

The --date-trick option allows you to enable an experimental trick to make add conflicts, in which
two users each add a file or directory with the same name, less problematic.While this trick is
completely safe, it is not clear to what extent it is beneficial.

remove
Remove should be called when you want to remove a file from your project, but don’t actually
want to delete the file. Otherwise just delete the file or directory, and darcs will notice that it has
been removed. Beaw are that the file WILL be deleted from any other copy of the repository to
which you later apply the patch.

mv Darcs mv needs to be called whenever you want to move files or directories. Unlike remove, mv
actually performs the move itself in your working copy.

darcs December2008 2



DARCS(1) User Commands DARCS(1)

replace Replace allows you to change a specified token wherever it occurs in the specified files.The
replace is encoded in a special patch and will merge as expected with other patches.Tokens here
are defined by a regexp specifying the characters which are allowed. By default a token corre-
sponds to a C identifier.

WORKING WITH CHANGES
record Record is used to name a set of changes and record the patch to the repository.

pull Pull is used to bring changes made in another repository into the current repository (that is, either
the one in the current directory, or the one specified with the --repodir option). Pull allows you to
bring over all or some of the patches that are in that repository but not in this one. Pull accepts
arguments, which are URLs from which to pull, and when called without an argument, pull will
use the repository from which you have most recently either pushed or pulled.

push Push is the opposite of pull. Push allows you to copy changes from the current repository into
another repository.

send Send is used to prepare a bundle of patches that can be applied to a target repository. Send accepts
the URL of the repository as an argument. Whencalled without an argument, send will use the
most recent repository that was either pushed to, pulled from or sent to. By default, the patch bun-
dle is sent by email, although you may save it to a file.

apply Apply is used to apply a bundle of patches to this repository. Such a bundle may be created using
send.

SEEING WHAT YOU’VE DONE
whatsnew

The ‘darcs whatsnew’ command lists unrecorded changes to the working tree. If you specify a set
of files and directories, only unrecorded changes to those files and directories are listed.

With the --summary option, the changes are condensed to one line per file, with mnemonics to
indicate the nature and extent of the change. The --look-for-adds option causes candidates for
‘darcs add’ to be included in the summary output.

By default, ‘darcs whatsnew’ uses Darcs’ internal format for changes.To see some context
(unchanged lines) around each change, use the --unified option.To view changes in conventional
‘dif f’ f ormat, use the ‘darcs diff’ comand; but note that ‘darcs whatsnew’ is faster.

This command exits unsuccessfully (returns a non-zero exit status) if there are no unrecorded
changes.

OTHER COMMANDS
re vert Revert is used to undo changes made to the working copy which have not yet been recorded.You

will be prompted for which changes you wish to undo. The last revert can be undone safely using
the unrevert command if the working copy was not modified in the meantime.

unrev ert
Unrevert is a rescue command in case you accidentally reverted something you wanted to keep
(for example, accidentally typing ‘darcs rev -a’ instead of ‘darcs rec -a’).

This command may fail if the repository has changed since the revert took place.Darcs will ask

darcs December2008 3



DARCS(1) User Commands DARCS(1)

for confirmation before executing an interactive command that will *definitely* prevent unrever-
sion.

unrecord
Unrecord does the opposite of record in that it makes the changes from patches active changes
again which you may record or revert later. The working copy itself will not change.Beware that
you should not use this command if you are going to re-record the changes in any way and there is
a possibility that another user may have already pulled the patch.

amend-record
Amend-record updates a ‘draft’ patch with additions or improvements, resulting in a single ‘fin-
ished’ patch.This is better than recording the additions and improvements as separate patches,
because then whenever the ‘draft’ patch is copied between repositories, you would need to make
sure all the extra patches are copied, too.

Do not copy draft patches between repositories, because a finished patch cannot be copied into a
repository that contains a draft of the same patch.If this has already happened, ‘darcs obliterate’
can be used to remove the draft patch.

Do not run amend-record in repository that other developers can pull from, because if they pull
while an amend-record is in progress, their repository may be corrupted.

When recording a draft patch, it is a good idea to start the name with ‘DRAFT:’ so that other
developers know it is not finished. When finished, remove it with ‘darcs amend-record --edit-
description’.

Like ‘darcs record’, if you call amend-record with files as arguments, you will only be asked about
changes to those files. So to amend a patch to foo.c with improvements in bar.c, you would run:

darcs amend-record --match ’touch foo.c’ bar.c

It is usually a bad idea to amend another developer’s patch. To make amend-record only ask about
your own patches by default, you can add something like ‘amend-record match David Roundy’ to
˜/.darcs/defaults, where ‘David Roundy’ is your name.

mark-conflicts
Darcs requires human guidance to unify changes to the same part of a source file.When a conflict
first occurs, darcs will add both choices to the working tree, delimited by markers.

However, you might revert or manually delete these markers without actually resolving the con-
flict. In this case, ‘darcs mark-conflicts’ is useful to show where any unresolved conflicts. It is
also useful if ‘darcs apply’ is called with --apply-conflicts, where conflicts aren’t marked initially.

Any unrecorded changes to the working tree *will* be lost forever when you run this command!
You will be prompted for confirmation before this takes place.

This command was historically called ‘resolve’, and this deprecated alias still exists for back-
wards-compatibility.

tag The ‘darcs tag’ command names the current repository state, so that it can easily be referred to
later. Every ‘important’ state should be tagged; in particular it is good practice to tag each stable
release with a number or codename.Advice on release numbering can be found at http://pro-
ducingoss.com/en/development-cycle.html.

darcs December2008 4



DARCS(1) User Commands DARCS(1)

To reproduce the state of a repository ‘R’ as at tag ‘t’, use the command ‘darcs get --tag t R’.The
command ‘darcs show tags’ lists all tags in the current repository.

Tagging also provides significant performance benefits: when Darcs reaches a shared tag that
depends on all antecedent patches, it can simply stop processing.

Like normal patches, a tag has a name, an author, a timestamp and an optional long description,
but it does not change the working tree.A tag can have any name, but it is generally best to pick a
naming scheme and stick to it.

The ‘darcs tag’ command accepts the --pipe and --checkpoint options, which behave as described
in ‘darcs record’ and ‘darcs optimize’ respectively.

setpref When working on project with multiple repositories and contributors, it is sometimes desirable for
a preference to be set consistently project-wide. This is achieved by treating a preference set with
‘darcs setpref’ as an unrecorded change, which can then be recorded and then treated like any
other patch.

Valid preferences are:

test -- a shell command that runs regression tests
predist -- a shell command to run before ‘darcs dist’
boringfile -- the path to a version-controlled boring file
binariesfile -- the path to a version-controlled binaries file

For example, a project using GNU autotools, with a ‘make test’ target to perform regression tests,
might enable Darcs’ integrated regression testing with the following command:

darcs setpref test ’autoconf && ./configure && make && make test’

Note that merging is not currently implemented for preferences: if two patches attempt to set the
same preference, the last patch applied to the repository will always take precedence. Thisis con-
sidered a low-priority bug, because preferences are seldom set.

diff Diff can be used to create a diff between two versions which are in your repository. Specifying
just --from-patch will get you a diff against your working copy. If you give diff no version argu-
ments, it gives you the same information as whatsnew except that the patch is formatted as the out-
put of a diff command

changes
Changes gives a changelog-style summary of the repository history, including options for altering
how the patches are selected and displayed.

annotate
Annotate displays which patches created or last modified a directory file or line. It can also display
the contents of a particular patch in darcs format.

dist The ‘darcs dist’ command creates a compressed archive (a ‘tarball’) in the repository’s root direc-
tory, containing the recorded state of the working tree (unrecorded changes and thedarcs direc-
tory are excluded).

If a predist command is set (see ‘darcs setpref’), that command will be run on the tarball contents

darcs December2008 5



DARCS(1) User Commands DARCS(1)

prior to archiving. For example, autotools projects would set it to ‘autoconf automake’.

By default, the tarball (and the top-level directory within the tarball) has the same name as the
repository, but this can be overridden with the --dist-name option.

trackdown
Trackdown tries to find the most recent version in the repository which passes a test.Given no
arguments, it uses the default repository test.Given one argument, it treats it as a test command.
Given two arguments, the first is an initialization command with is run only once, and the second
is the test command.

show contents
Show contents can be used to display an earlier version of some file(s). If you give show contents
no version arguments, it displays the recorded version of the file(s).

show files
The files command lists the version-controlled files in the working copy. The similar manifest
command, lists the same files, excluding any directories.

show repo
The repo command displays information about the current repository (location, type, etc.).Some
of this information is already available by inspecting files within the _darcs directory and some is
internal information that is informational only (i.e. for developers). Thiscommand collects all of
the repository information into a readily available source.

show authors
The ‘darcs show authors’ command lists the authors of the current repository, sorted by the num-
ber of patches contributed. With the --verbose option, this command simply lists the author of
each patch (without aggregation or sorting).

show tags
The tags command writes a list of all tags in the repository to standard output.

obliterate
Obliterate completely removes recorded patches from your local repository. The changes will be
undone in your working copy and the patches will not be shown in your changes list anymore.
Beware that you can lose precious code by obliterating!

rollback
Rollback is used to undo the effects of one or more patches without actually deleting them.
Instead, it creates a new patch reversing selected portions. of those changes. Unlike obliterate and
unrecord (which accomplish a similar goal) rollback is perfectly safe, since it leaves in the reposi-
tory a record of its changes.

put The ‘darcs put’ command creates a copy of the current repository. It is currently very inefficient,
so when creating local copies you should use ‘darcs get . x’ instead of ‘darcs put x’.

Currently this command just uses ‘darcs init’ to create the target repository, then ‘darcs push --all’
to copy patches to it.Options passed to ‘darcs put’ are passed to the init and/or push commands as
appropriate. Seethose commands for an explanation of each option.

darcs December2008 6



DARCS(1) User Commands DARCS(1)

optimize
Optimize can help to improve the performance of your repository in a number of cases.

check This command verifies that the patches in the repository, when applied successively to an empty
tree, result in the pristine tree. If not, the differences are printed and Darcs exits unsucessfully
(with a non-zero exit status).

If the repository is in darcs-1 format and has a checkpoint, you can use the --partial option to start
checking from the latest checkpoint.This is the default for partial darcs-1 repositories; the --com-
plete option to forces a full check.

If a regression test is defined (see ‘darcs setpref’) it will be run by ‘darcs check’. Use the --no-test
option to disable this.

repair The ‘darcs repair’ command attempts to fix corruption in the current repository. Currently it can
only repair damage to the pristine tree, which is where most corruption occurs.

convert
Convert is used to convert a repository to darcs-2 format.

The recommended way to convert an existing project from darcs 1 to darcs 2 is to merge all
branches, ‘darcs convert’ the resulting repository, re-create each branch by using ‘darcs get’ on the
converted repository, then using ‘darcs obliterate’ to delete patches of branches.

BUGS
Report bugs by mail tobugs@darcs.netor via the web site athttp://bugs.darcs.net/.

AUTHOR
David Roundy <droundy@abridgegame.org>.

darcs December2008 7


