DARCS(1) User Commands ARCS(1)

NAME
darcs — an advanced revision control system

SYNOPSIS
darcs COMMAND ...

DESCRIPTION
darcs is a nifty revision control tookor more a detailed description, see the html documentation, which
should be wailable at /usr/share/doc/darcs/manual/teml. To easily get more specific help on each
command, you can call ‘darcs COMMAND --help’.

CREATING REPOSITORIES
get Get creates a local cppf a repository The optional second argument specifies a destination
directory for the ne copy; if omitted, it is inferred from the source location.

By default Darcs will cop every patch from the original repositoryrhis means the cg@ds com-

pletely independent of the original; you can operate on therggository gen when the original

is inaccessible. If you expect the original repository to remain accessible, you can use --lazy to
avad copying patches until tyeare needed (‘copon demand’). Thids particularly useful when
copying a remote repository with a long history that you tdzare about.

The --lazy option isr’as wseful for local copies, because Darcs will automatically use ‘hard link-
ing’ where possible. As well as\8ag time and space, you can weox delete the original reposi-
tory without affecting a complete, hard-linked gopard linking requires that the cppe on he
same filesystem and the original reposit@and that the filesystem support hard linkiribhis is
usually the case, except for Windows versions prior to Vista.

Darcs get will not copunrecorded changes to the source reposgamgtking tree.

It is often desirable to maka ©py of a repository that excludes some patchEst example, if
releases are tagged then ‘darcs get -‘taguld male a opy of the repository as at the latest
release.

An untagged repository state can still be identified unambiguously by a context file, as generated
by ‘darcs changes --comt& Given the name of such a file, the --coxtt®ption will create a
repository that includes only the patches from that ebni&/hena user reports a bug in an unre-
leased version of your project, the recommendayg te find out exactly what version thevere

running is to hee them include a context file in the bug report.

You can also mat a @py of an wntagged state using the --to-patch or --to-match options, which
exclude patches ‘after’ the first matching pat®@ecause these options treat the set of patches as
an ordered sequence, you may get different results after reordering with ‘darcs optimize’, so tag-
ging is preferred.

If the source repository is in agleey darcs-1 format and contains at least one checkpoint (see
‘darcs optimize), the --partial option will create a partial repositérypartial repository discards
history from before the checkpoint in order to reduce resource requirenk@ntsiodern darcs-2
repositories, --partial is a deprecated alias for the --lazy option.

initialize
The ‘darcs initialize’ command turns the current directory into a Darcs reposiony exsting
files and subdirectories become UNSAVED changes in thr&img tree: record them with ‘darcs
add -r’ and ‘darcs record’.

When cowerting a project to Darcs from some other VCS, translating the full revision history to

darcs Decembe&t008 1

DARCS(1)

User Commands ARCS(1)

native Darcs patches is recommendddhe Darcs wiki lists utilities for this.) Because Darcs is
optimized for small patches, simply importing the latest revision as a single large patch can PER-
MANENTLY degade Darcs performance in your repository by an order of magnitude.

This command creates thedarcs’ directorywhich stores version control metadataalso con-
tains per-repository settings inlarcs/prefs/, which you can read about in the user manual.

In addition to the default darcs-2 format, there are backwards-compatible formats for the
_darcs directory If all contributors to your project ka darcs 2.0.0 or higheuse the default fer
mat.

If some contributors still run Darcs bel@.0.0, you need to use the ‘old-fashioneckiriory’ for-

mat for ay repositories those contritors access. Because patches cannot be shared between
darcs-2 and old-fashioned repositories, other project repos should use the intermediary ‘hashed’
format.

Darcs will create a hashed repository by default when you ‘darcs get’ a repositoryastamhéed
inventory format. Once all contributors wva upgraded to Darcs 2.0.0 or lgtese ‘darcs covert’
to corvert the project to the darcs-2 format.

Initialize is commonly abbreviated to ‘init’.

MODIFYING REPOSITOR Y CONTENTS

darcs

add

remove

mv

Generally a repository contains both files that should be version controlled (such as source code)
and files that Darcs should ignore (such mcatables compiled from the source cod@&he
‘darcs add’ command is used to tell Darcs which files to version control.

When an existing project is first imported into a Darcs repositdsycommon to run ‘darcs add -r
* or ‘darcs record -I' to add all initial source files into darcs.

Adding symbolic links (symlinks) is not supported.

Darcs will ignore all files and folders that look ‘boringThe --boring option werrides this
behaviour.

Darcs will not add file if another file in the same folder has the same name, except foftease.
--case-ok optionerrides this behdour. Windows and OS X usually use filesystems that do not
allow files a folder to h& te same namexeept for case (for example, ‘ReadMe’ and
‘README’). If --case-ok is used, the repository might be unusable on those systems!

The --date-trick option allows you to enable an experimental trick t@ mEkconflicts, in which
two users each add a file or directory with the same name, less problekvdiie. this trick is
completely safe, it is not clear to what extent it is beneficial.

Remwe dould be called when you want to revaoa fle from your project, but dohactually
want to delete the file. Otherwise just delete the file or directoiy darcs will notice that it has
been remeed. Beawae that the file WILL be deleted from yaother copy of the repository to
which you later apply the patch.

Darcs mv needs to be called whesreyou want to mae files or directories. Unl& remove, mv
actually performs the nve itself in your working cop

Decembe&t008 2

DARCS(1) User Commands ARCS(1)

replace Replace allows you to change a specifiecetolvherger it occurs in the specified filesThe
replace is encoded in a special patch and will merge as expected with other pktkbes.here
are defined by a gexp specifying the characters which are wkaol. Bydefault a token corre-
sponds to a C identifier.

WORKING WITH CHANGES
record Record is used to name a set of changes and record the patch to the repository.

pull Pull is used to bring changes made in another repository into the current repository (that is, either
the one in the current directoiyr the one specified with the --repodir option). Pull allows you to
bring over al or some of the patches that are in that repository but not in this one. Pull accepts
arguments, which are URLs from which to pull, and when called withoutgumant, pull will
use the repository from which youvganost recently either pushed or pulled.

push Push is the opposite of pull. Push allows you toycdpanges from the current repository into
another repository.

send Send is used to prepare@nile of patches that can be applied to a target repostend accepts
the URL of the repository as angament. Whercalled without an argument, send will use the
most recent repository thatw either pushed to, pulled from or sent to. By default, the pateh b
dle is sent by email, although you mayesi to a file.

apply Apply is used to apply a bundle of patches to this repositeugh a bundle may be created using
send.

SEEING WHAT YOU'VE DONE
whatsnew
The ‘darcs whatsnew’ command lists unrecorded changes to the working tree. If you specify a set
of files and directories, only unrecorded changes to those files and directories are listed.

With the --summary option, the changes are condensed to one line per file, with mnemonics to
indicate the nature and extent of the change. The --look-for-adds option causes candidates for
‘darcs add’ to be included in the summary output.

By default, ‘darcs whatsnew’ uses Darcs’ internal format for changesse some congt
(unchanged lines) around each change, use the --unified optioriew changes in corentional
‘diff’ f ormat, use the ‘darcs flicomand; but note that ‘darcs whatsnew’ is faster.

This command exits unsuccessfully (returns a non-zeitostatus) if there are no unrecorded
changes.

OTHER COMMANDS
revert Revert is used to undo changes made to the working edgpch hase rot yet been recordedrou
will be prompted for which changes you wish to undo. The lasttrean be undone safely using
the unreert command if the working cgpwvas not modified in the meantime.

unrevet
Unrevert is a rescue command in case you accidentallgried something you wanted t@dp
(for example, accidentally typing ‘darcs/r@’ instead of ‘darcs rec -a’).

This command may fail if the repository has changed since ved teok place.Darcs will ask

darcs Decembet008 3

DARCS(1)

darcs

User Commands ARCS(1)

for confirmation before>ecuting an interactie mmand that will *definitely* preent unrever-
sion.

unrecord

Unrecord does the opposite of record in that it @sathe changes from patches \actihanges
again which you may record orvert later The working cop itself will not change Beware that
you should not use this command if you are going to re-record the changgsvayaand there is
a possibility that another user mayvesdready pulled the patch.

amend-record

Amend-record updates a ‘draft’ patch with additions or im@reents, resulting in a single ‘fin-
ished’ patch.This is better than recording the additions and iw@rents as separate patches,
because then whever the ‘draft’ patch is copied between repositories, yauwbd need to mak
sure all the extra patches are copied, too.

Do not copy draft patches between repositories, because a finished patch cannot be copied into a
repository that contains a draft of the same pattthis has already happened, ‘darcs obliterate’
can be used to reme the draft patch.

Do not run amend-record in repository that othereld@ers can pull from, because if thpull
while an amend-record is in progress, their repository may be corrupted.

When recording a draft patch, it is a good idea to start the name with ‘DR#d-That other
developers knav it is not finished. When finished, rem® it with ‘darcs amend-record --edit-
description’.

Like ‘darcs record’, if you call amend-record with files agiarents, you will only be asked about
changes to those files. So to amend a patch to foo.c withvements in bar.c, you would run:

darcs amend-record --match 'touch foo.c’ bar.c
It is usually a bad idea to amend anotheeliper’'s patch. © make anend-record only ask about

your own patches by daidlt, you can add somethingdikamend-record match David Roundy’ to
"/.darcs/defaults, where ‘David Roundy’ is your hame.

mark-conflicts

tag

Darcs requires human guidance to unify changes to the same part of a soukttdiea conflict
first occurs, darcs will add both choices to the working tree, delimited by markers.

However, you might reert or manually delete these markers without actually resolving the con-
flict. In this case, ‘darcs mark-conflicts’ is useful to whehere agy unresohed conflicts. It is
also useful if ‘darcs apply’ is called with --apply-conflicts, where conflicts anearked initially.

Any unrecorded changes to the working tree *will* be lost ¥erevhen you run this command!
You will be prompted for confirmation before this takes place.

This command was historically called ‘resolve’, and this deprecated aliasxigth ér back-
wards-compatibility.

The ‘darcs tag’ command names the current repository state, so that it can easily be referred to
later Every ‘important’ state should be tagged; in particular it is good practice to tag each stable
release with a number or codenamfdvice on release numbering can be found at http://pro-
ducingoss.com/en/gelopment-cycle.html.

Decembet008 4

DARCS(1) User Commands ARCS(1)

To reproduce the state of a repository ‘R’ as at tag ‘t’, use the command ‘darcs get --tatheR’.
command ‘darcs shwotags’ lists all tags in the current repository.

Tagging also preides significant performance benefits: when Darcs reaches a shared tag that
depends on all antecedent patches, it can simply stop processing.

Like mormal patches, a tag has a name, an authtmestamp and an optional long description,
but it does not change theonking tree. A tag can hee any mme, but it is generally best to pick a
naming scheme and stick to it.

The ‘darcs tag’ command accepts the --pipe and --checkpoint options, whiste lzeldascribed
in ‘darcs record’ and ‘darcs optimize’ respeely.

setpref When working on project with multiple repositories and contributors, it is sometimes desirable for
a preference to be set consistently project-wide. This is aethiey treating a preference set with
‘darcs setpréfas an urecorded change, which can then be recorded and then treatedylik
other patch.

Valid preferences are:

test -- a shell command that runs regression tests
predist -- a shell command to run before ‘darcs dist’
boringfile -- the path to a version-controlled boring file
binariesfile -- the path to a version-controlled binaries file

For example, a project using GNU autotools, with a ‘madst’ target to perform regression tests,
might enable Darcs’ integrated regression testing with the following command:

darcs setpref test 'autoconf && ./configure && nea&& make test’

Note that meging is not currently implemented for preferences: ib patches attempt to set the
same preference, the last patch applied to the repository walyatale precedence. This con-
sidered a low-priority bug, because preferences are seldom set.

diff Diff can be used to create afdietween tw versions which are in your repositor$pecifying
just --from-patch will get you a dibganst your working copy. If you gve dff no version agu-
ments, it g¥es you the same information as whatarexcept that the patch is formatted as the out-
put of a dif command

changes
Changes gies a hangelog-style summary of the repository histargluding options for altering
how the patches are selected and displayed.

annotate
Annotate displays which patches created or last modified a directory file or line. It can also display
the contents of a particular patch in darcs format.

dist The ‘darcs dist’ command creates a compressedvaréhitarball’) in the repositoryg root direc-
tory, containing the recorded state of therking tree (unrecorded changes and tHarcs direc-
tory are excluded).

If a predist command is set (see ‘darcs setprisfat command will be run on the tarball contents

darcs Decembet008 5

DARCS(1) User Commands ARCS(1)

darcs

prior to archving. For example, autotools projects would set it to ‘autoconf automake’.

By default, the tarball (and the top#4# directory within the tarball) has the same name as the
repository but this can bewerridden with the --dist-name option.

trackdown
Trackdavn tries to find the most recent version in the repository which passes &iest.no
arguments, it uses the default repository té€siven one argument, it treats it as a test command.
Given two aguments, the first is an initialization command with is run only once, and the second
is the test command.

show contents
Show contents can be used to display an earlier version of some file(s). Ifyoehgiv contents
no version arguments, it displays the recorded version of the file(s).

show files
The files command lists theession-controlled files in the working cpp The similar manifest
command, lists the same files, excluding dinectories.

show repo
The repo command displays information about the current repository (location, typeSetas.
of this information is alreadyvailable by inspecting files within the _darcs directory and some is
internal information that is informational only (i.e. forvepers). Thiscommand collects all of
the repository information into a readilyadlable source.

show authors
The ‘darcs shw authors’ command lists the authors of the current reposisoried by the num-
ber of patches contuited. Wth the --verbose option, this command simply lists the author of
each patch (without agggaion or sorting).

show tags
The tags command writes a list of all tags in the repository to standard output.

obliterate
Obliterate completely remves recorded patches from your local repositoffhe changes will be
undone in your working cgpand the patches will not be shio in your changes list gmore.
Beware that you can lose precious code by obliterating!

rollback
Rollback is used to undo thefefts of one or more patches without actually deleting them.
Instead, it creates aweatch reersing selected portions. of those changes. @rdikiterate and
unrecord (which accomplish a similar goal) rollback is perfectly safe, sinceés|gathe reposi-
tory a record of its changes.

put The ‘darcs put’ command creates a\op the current repositorylt is currently very ineficient,
so when creating local copies you should use ‘darcs get . X’ instead of ‘darcs put x'.

Currently this command just uses ‘darcs init’ to create tlgetaepositorythen ‘darcs push --all’

to copy patches to it.Options passed to ‘darcs put’ are passed to the init and/or push commands as
appropriate. Se#hose commands for an explanation of each option.

Decembet008 6

DARCS(1) User Commands ARCS(1)

optimize
Optimize can help to impwe te performance of your repository in a number of cases.

check This command verifies that the patches in the repositdrgn applied successly to an empty
tree, result in the pristine tree. If not, the differences are printed and Darcs exits unsucessfully
(with a non-zero exit status).

If the repository is in darcs-1 format and has a checkpoint, you can use the --partial option to start
checking from the latest checkpoirithis is the default for partial darcs-1 repositories; the --com-
plete option to forces a full check.

If a regression test is defined (see ‘darcs setpref’) it will be run by ‘darcs check’. Use the --no-test
option to disable this.

repair The ‘darcs repair’ command attempts to fix corruption in the current repostaryently it can
only repair damage to the pristine tree, which is where most corruption occurs.

corvert
Corvert is used to corert a repository to darcs-2 format.

The recommended way to a@nt an existing project from darcs 1 to darcs 2 is to merge all

branches, ‘darcs coat’ the resulting repositorye-create each branch by using ‘darcs get’ on the
converted repositorythen using ‘darcs obliterate’ to delete patches of branches.

BUGS
Report bugs by mail tbugs@darcs.nebr via the web site dtttp://bugs.darcs.net/

AUTHOR
David Roundy <droundy@abridgame.org>.

darcs Decembet008 7

