DARCS(1) DARCS(1)

NAME
darcs — an advanced revision control system

SYNOPSIS
darcs COMMAND...

DESCRIPTION
Darcs is a free, open source revision control system. It is:

» Distributed: Every user has access to the full command setyvignboundaries between server and
client or committer and non-committers.

» Interactve: Darcs is easy to learn and efficient to use because it asks you questions in response to sim-
ple commands, giving you choices in your worksMld‘ou can choose to record one change in a file,
while ignoring anotherAs you update from upstream, you canie& each patch nameyen the full
‘diff’ f or interesting patches.

» Smart: Originally deeloped by physicist Dad Roundy darcs is based on a unique algebra of patches.
This smartness lets you respond to changing demandayis tlvat would otherwise not be possible.
Learn more about spontaneous branches with darcs.

Below is a cescription of each darcs command.

Changing and querying the working copy:
add [OPTION]... <FILE or DIRECTORY> ...
Generally a repository contains both files that should be version controlled (such as source code) and
files that Darcs should ignore (such aescatables compiled from the source code). The ‘darcs add’
command is used to tell Darcs which files to version control.

When an existing project is first imported into a Darcs repositdgycommon to run ‘darcs add -r *
or ‘darcs record -I' to add all initial source files into darcs.

Adding symbolic links (symlinks) is not supported.
Darcs will ignore all files and folders that look ‘boring’. The --boring optieerrides this behaour.

Darcs will not add file if another file in the same folder has the same name, except foflvase.
--case-ok option errides this behdour. Windows and OS X usually use filesystems that do not
allow files a folder to hae the same namexeept for case (for example, ‘ReadMe’ and ‘README’).
If --case-ok is used, the repository might be unusable on those systems!

The --date-trick option allows you to enable an experimental trick te r@uikconflicts, in which tw
users each add a file or directory with the same name, less problevidhtie.this trick is completely
safe, it is not clear to what extent it is beneficial.

remove [OPTION]... <FILE or DIRECTORY> ...
Remare should be called when you want to revaa fle from your project, but dohactually want to
delete the file. Otherwise just delete the file or directang darcs will notice that it has been
removed. Beawae that the file WILL be deleted fromyanther cojy of the repository to which you
later apply the patch.

mv [OPTION]... [FILE or DIRECTORY]...
Darcs mv needs to be called whesreyou want to mwe files or directories. Unli& remove, mv ectu-
ally performs the mee itself in your working cop

2.1.2 (+ 384 patches) 1



DARCS(1) DARCS(1)

replace[OPTION]... <OLD> <NEW> <FILE> ...
Replace allows you to change a specified token wheiteoccurs in the specified fileS'he replace is
encoded in a special patch and will mergexgeeted with other patcheJokens here are defined by
a regey Yecifying the characters which are alled. Bydefault a token corresponds to a C identifier

revert [OPTION]... [FILE or DIRECTORY]...
Revert is used to undo changes made to the working egpch have rot yet been recordedrou will
be prompted for which changes you wish to undo. The laattrean be undone safely using the unre-
vert command if the working cgpwas not modified in the meantime.

unrevet [OPTION]...
Unrevert is a rescue command in case you accidentallgriesi something you wanted to keep (for
example, accidentally typing ‘darcswea’ instead of ‘darcs rec -a’).

This command may fail if the repository has changed since teg teok place. Darcs will ask for
confirmation beforexecuting an interactie mmand that will *definitely* preent unreversion.

whatsnew[OPTION]... [FILE or DIRECTORY]...
The ‘darcs whatsnew’ command lists unrecorded changes to the working tree. If you specify a set of
files and directories, only unrecorded changes to those files and directories are listed.

With the --summary option, the changes are condensed to one line per file, with mnemonics to indicate
the nature and extent of the change. The --look-for-adds option causes candidates for ‘darcs add’ to be
included in the summary output.

By default, ‘darcs whatsmeé uses Darcs’ internal format for change3o se some congt
(unchanged lines) around each change, use the --unified ofiioniew changes in corentional
‘diff’ f ormat, use the ‘darcs #litomand; but note that ‘darcs whatsnew’ is faster.

This command exits unsuccessfully (returns a non-zdtatatus) if there are no unrecorded changes.

Copying changes between the working copy and the repository:
record [OPTION]... [FILE or DIRECTORY]...
Record is used to name a set of changes and record the patch to the repository.

unrecord [OPTION]...
Unrecord does the opposite of record in that it makes the changes from pateleechanties agin
which you may record or vert later The working coyy itself will not change.Beware that you
should not use this command if you are going to re-record the changgswayaand there is a possi-
bility that another user may ¥ dready pulled the patch.

amend-record[OPTION]... [FILE or DIRECTORY]...
Amend-record updates a ‘draft’ patch with additions or im@rents, resulting in a single ‘finished’
patch. Thids better than recording the additions and inapmeents as separate patches, because then
whenever the ‘draft’ patch is copied between repositories, you would need te mek all the ®tra
patches are copied, too.

2.1.2 (+ 384 patches) 2



DARCS(1) DARCS(1)

Do not copy draft patches between repositories, because a finished patch cannot be copied into a
repository that contains a draft of the same pattthis has already happened, ‘darcs obliterate’ can
be used to reme the draft patch.

Do not run amend-record in repository that otheseldpers can pull from, because if yhpull while
an amend-record is in progress, their repository may be corrupted.

When recording a draft patch, it is a good idea to start the name with ‘DRAFT:" so that otiep-de
ers knav it is not finished. When finished, rem®it with ‘darcs amend-record --edit-description’.

Like ‘darcs record’, if you call amend-record with files as arguments, you will only be asked about
changes to those files. So to amend a patch to foo.c withvempents in bar.c, you would run:

darcs amend-record --match 'touch foo.c’ bar.c

It is usually a bad idea to amend anotheretiper’'s patch. © make anend-record only ask about
your own patches by default, you can add somethirgy ‘fiknend-record match David Roundy’ to
“l.darcs/defaults, where ‘David Roundy’ is your hame.

mark-conflicts [OPTION]...
Darcs requires human guidance to unify changes to the same part of a souvitadiea conflict first
occurs, darcs will add both choices to the working tree, delimited by markers.

However, you might reert or manually delete these markers without actually resolving the coriict.
this case, ‘darcs mark-conflicts’ is useful to whehere ag unresohed conflicts. It is also useful if
‘darcs apply’ is called with --apply-conflicts, where conflicts arewairked initially.

Any unrecorded changes to the working tree *will* be lost¥erevhen you run this commandfou
will be prompted for confirmation before this takes place.

This command was historically called ‘resolve’, and this deprecated aliasxistif éor backwards-
compatibility.

Direct modification of the repository:
tag [OPTION]... [TAGNAME]
The ‘darcs tag’ command names the current repository state, so that it can easily be referred to later
Every ‘important’ state should be tagged; in particular it is good practice to tag each stable release
with a number or codename. Advice on release numbering can be found at http:/producin-
goss.com/en/delopment-cycle.html.

To reproduce the state of a repository ‘R’ as at tag ‘t’, use the command ‘darcs get --tagheR’.
command ‘darcs shotags’ lists all tags in the current repository.

Tagging also provides significant performance benefits: when Darcs reaches a shared tag that depends
on all antecedent patches, it can simply stop processing.

Like rormal patches, a tag has a name, an authitnestamp and an optional long description, but it
does not change the working tre®.tag can hee any mme, but it is generally best to pick a haming
scheme and stick to it.

The ‘darcs tag’ command accepts the --pipe and --checkpoint options, whicte laeftscribed in

2.1.2 (+ 384 patches) 3



DARCS(1) DARCS(1)

‘darcs record’ and ‘darcs optimize’ respeely.

setpref[OPTION]... <PREF> <VALUE>
When working on project with multiple repositories and countabs, it is sometimes desirable for a
preference to be set consistently project-wide. This is eahlgy reating a preference set with ‘darcs
setpref’as an unrecorded change, which can then be recorded and then tresmddiker patch.

Valid preferences are:

test -- a shell command that runs regression tests
predist -- a shell command to run before ‘darcs dist’
boringfile -- the path to a version-controlled boring file
binariesfile -- the path to a version-controlled binaries file

For example, a project using GNU autotools, with a ‘maist’ target to perform regression tests,
might enable Darcs’ integrated regression testing with the following command:

darcs setpref test 'autoconf && ./configure && nea&& make test’

Note that merging is not currently implemented for preferencesoipaiches attempt to set the same
preference, the last patch applied to the repository withyed tale precedence. This considered a
low-priority bug, because preferences are seldom set.

Querying the repository:
diff [OPTION]... [FILE or DIRECTORY]...
Diff can be used to create afdietween tw versions which are in your repositor§pecifying just
--from-patch will get you a difagainst your working cop. If you give dff no version arguments, it
gives you the same information as whatanexcept that the patch is formatted as the output offa dif
command

changeqJOPTION]... [FILE or DIRECTORY]...
Changes gies a hangelog-style summary of the repository historgluding options for altering ko
the patches are selected and displayed.

annotate[OPTION]... [FILE or DIRECTORY]...
Annotate displays which patches created or last modified a directory file or line. It can also display the
contents of a particular patch in darcs format.

dist [OPTION]...
The ‘darcs dist' command creates a compressedvaréhitarball’) in the repositorg root directory
containing the recorded state of the working tree (unrecorded changes anthiritse directory are
excluded).

If a predist command is set (see ‘darcs setpref’), that command will be run on the tarball contents prior
to archving. For example, autotools projects would set it to ‘autoconf automake’.

By default, the tarball (and the top4# directory within the tarball) has the same name as the reposi-
tory, but this can be@rridden with the --dist-name option.

2.1.2 (+ 384 patches) 4



DARCS(1) DARCS(1)

trackdown [OPTION]... [[INITIALIZATION] COMMAND]
Trackdavn tries to find the most recenergion in the repository which passes a t€&en no agu-
ments, it uses the default repository teGiven one argument, it treats it as a test comma@aden
two arguments, the first is an initialization command with is run only once, and the second is the test

command.

show contents[OPTION]... [FILE]...
Shaw contents can be used to display an earl@gsion of some file(s). If youg sow contents no
version arguments, it displays the recorded version of the file(s).

show files[OPTION]...
The files command lists theession-controlled files in the working cppThe similar manifest com-

mand, lists the same files, excluding airectories.

show repo[OPTION]...
The repo command displays information about the current repository (location, type, etc.). Some of
this information is alreadyvailable by inspecting files within the _darcs directory and some is internal
information that is informational only (i.e. for#opers). Thiscommand collects all of the reposi-
tory information into a readilyvailable source.

show authors [OPTION]...
The ‘darcs she authors’ command lists the authors of the current reposioried by the number of
patches contrited. Wth the --verbose option, this command simply lists the author of each patch

(without aggreation or sorting).

show tags[OPTION]...
The tags command writes a list of all tags in the repository to standard output.

Copying patches between repositories with working copy update:
pull [OPTION]... [REPOSITORY]...
Pull is used to bring changes made in another repository into the current repository (that is, either the
one in the current directgrgr the one specified with the --repodir option). Pull allows you to bring
ove all or some of the patches that are in that repository but not in this one. Pull acgeptsras,
which are URLs from which to pull, and when called without an argument, pull will use the repository
from which you hae nost recently either pushed or pulled.

obliterate [OPTION]...
Obliterate completely remves recorded patches from your local repositofyhe changes will be
undone in your working cgpand the patches will not be shown in your changes liginane. Bevare
that you can lose precious code by obliterating!

rollback [OPTION]... [FILE or DIRECTORY]...

2.1.2 (+ 384 patches) 5



DARCS(1) DARCS(1)

Rollback is used to undo thefedts of one or more patches without actually deleting them. Instead, it
creates a me patch reersing selected portions. of those changes. @nilliliterate and unrecord
(which accomplish a similar goal) rollback is perfectly safe, sinceviesda the repository a record of

its changes.

push[OPTION]... [REPOSITORY]
Push is the opposite of pull. Push allows you toyadanges from the current repository into another
repository.

send[OPTION]... [REPOSITORY]
Send is used to prepare @nblle of patches that can be applied to a target reposBend accepts the
URL of the repository as anqment. Whercalled without an argument, send will use the most
recent repository thatas either pushed to, pulled from or sent to. By default, the patch bundle is sent
by email, although you maywait to a fie.

apply [OPTION]... <RATCHFILE>
Apply is used to apply aumdle of patches to this repositoruch a bundle may be created using
send.

get[OPTION]... <REPOSITORY> [<DIRECTORY>]
Get creates a local cppf a repository The optional second argument specifies a destination direc-
tory for the nev copy; if omitted, it is inferred from the source location.

By default Darcs will cop every patch from the original repositoryThis means the cgpis com-
pletely independent of the original; you can operate on theregository gen when the original is
inaccessible. If{you epect the original repository to remain accessible, you can use --laxgitb a
copying patches until theare needed (‘copon demand’). Thids particularly useful when copying a
remote repository with a long history that you daare about.

The --lazy option isi’as wseful for local copies, because Darcs will automatically use ‘hard linking’
where possible. As well as saving time and space, you cae malelete the original repository
without affecting a complete, hard-linked gopHard linking requires that the cpfe on he same
filesystem and the original repositpand that the filesystem support hard linking. This is usually the
case, except for Windows versions prior to Vista.

Darcs get will not copunrecorded changes to the source reposgamgtking tree.

It is often desirable to maka ®opy of a repository that excludes some patch&sr example, if
releases are tagged then ‘darcs get -*taguld male a opy of the repository as at the latest release.

An untagged repository state can still be identified unambiguously by a context file, as generated by
‘darcs changes --conte. Given the name of such a file, the --caxtteption will create a repository

that includes only the patches from that cent&Vhena user reports a bug in an unreleased version of
your project, the recommended way to find out exactly whision thg were running is to hee them

include a context file in the bug report.

You can also ma# acopy of an wntagged state using the --to-patch or --to-match options, which
exclude patches ‘after’ the first matching patddecause these options treat the set of patches as an
ordered sequence, you may get different results after reordering with ‘darcs optimize’, so tagging is
preferred.

2.1.2 (+ 384 patches) 6



DARCS(1) DARCS(1)

If the source repository is in ageey darcs-1 format and contains at least one checkpoint (see ‘darcs
optimize), the --partial option will create a partial repositofy partial repository discards history
from before the checkpoint in order to reduce resource requirenfemtmodern darcs-2 repositories,
--partial is a deprecated alias for the --lazy option.

put [OPTION]... <NEW REPOSITORY>
The ‘darcs put’ command creates a @b the current repositorylt is currently very inefficient, so
when creating local copies you should use ‘darcs get . X’ instead of ‘darcs put x'.

Currently this command just uses ‘darcs init’ to create the target repp#itmy'darcs push --all’ to
copy patches to it. Options passed to ‘darcs put’ are passed to the init and/or push commands as
appropriate. Sethose commands for an explanation of each option.

Administrating repositories:
initialize [OPTION]...
The ‘darcs initialize’ command turns the current directory into a Darcs reposfiogy exsting files
and subdirectories become UNSAVED changes in the working tree: record them with ‘darcs add -r’
and ‘darcs record'.

When cowerting a project to Darcs from some other VCS, translating the fuiiom history to

native Darcs patches is recommendddhe Darcs wiki lists utilities for this.) Because Darcs is opti-
mized for small patches, simply importing the latest revision as a single large patch can PERMA-
NENTLY degade Darcs performance in your repository by an order of magnitude.

This command creates thedarcs’ directorywhich stores &rsion control metadata. It also contains
per-repository settings irdarcs/prefs/, which you can read about in the user manual.

In addition to the default darcs-2 format, there are backwards-compatible formats for thelarcs
directory If all contributors to your project ka darcs 2.0.0 or higheuse the default format.

If some contributors still run Darcs bel®.0.0, you need to use the ‘old-fashionegeiriory’ format
for ary repositories those contributors access. Because patches cannot be shared between darcs-2 and
old-fashioned repositories, other project repos should use the intermediary ‘hashed’ format.

Darcs will create a hashed repository byadétf when you ‘darcs get’ a repository in olshioned
inventory format. Once all contributors V& ypgraded to Darcs 2.0.0 or lgtese ‘darcs covert’ to
corvert the project to the darcs-2 format.

Initialize is commonly abbreviated to ‘init’.

optimize [OPTION]...
Optimize can help to impve the performance of your repository in a number of cases.

check[OPTION]...
This command verifies that the patches in the repositdrgn applied successly to an empty tree,
result in the pristine tredf not, the differences are printed and Darcs exits unsucessfully (with a non-
zero exit status).

If the repository is in darcs-1 format and has a checkpoint, you can use the --partial option to start
checking from the latest checkpoint. This is the default for partial darcs-1 repositories; the --complete

2.1.2 (+ 384 patches) 7



DARCS(1) DARCS(1)

option to forces a full check.

If a regression test is defined (see ‘darcs setpref’) it will be run by ‘darcs check’. Use the --no-test
option to disable this.

repair [OPTION]...
The ‘darcs repair’ command attempts to fix corruption in the current reposiiaryently it can only
repair damage to the pristine tree, which is where most corruption occurs.

corvert [OPTION]... <REPOSITORY> [<DIRECTORY>]
Corvert is used to corert a repository to darcs-2 format.

The recommended way to a@nt an isting project from darcs 1 to darcs 2 is to merge all branches,
‘darcs comert’ the resulting repositoryre-create each branch by using ‘darcs get’ on theecieu
repository then using ‘darcs obliterate’ to delete patches of branches.

BUGS
At http://bugs.darcs.net/ you can find a list of wndbugs in DarcsUnknown bugs can be reported at that
site (after creating an account) or by emailing the report to bugs@darcs.net.

SEE ALSO

A user manual is included with Darcs, in PDF and HTML fori. can also be found at
http://darcs.net/manual/.

2.1.2 (+ 384 patches) 8



